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ABSTRACT
Autonomous finite element analyses (AFE) based on CT scans predict the biomechanical response of femurs during stance and side-
wise fall positions. We combine AFE with patient data via a machine learning (ML) algorithm to predict the risk of hip fracture. An
opportunistic retrospective clinical study of CT scans is presented, aimed at developing a ML algorithm with AFE for hip fracture risk
assessment in type 2 diabetic mellitus (T2DM) and non-T2DM patients.
Abdominal/pelvis CT scans of patients who experienced a hip fracture within 2 years after an index CT scan were retrieved from a
tertiary medical center database. A control group of patients without a known hip fracture for at least 5 years after an index CT scan
was retrieved. Scans belonging to patients with/without T2DM were identified from coded diagnoses. All femurs underwent an AFE
under three physiological loads. AFE results, patient’s age, weight, and height were input to the ML algorithm (support vector
machine [SVM]), trained by 80% of the known fracture outcomes, with cross-validation, and verified by the other 20%.
In total, 45% of available abdominal/pelvic CT scans were appropriate for AFE (at least 1/4 of the proximal femur was visible in the
scan). The AFE success rate in automatically analyzing CT scans was 91%: 836 femurs we successfully analyzed, and the results were
processed by the SVM algorithm. A total of 282 T2DM femurs (118 intact and 164 fractured) and 554 non-T2DM (314 intact and
240 fractured) were identified. Among T2DM patients, the outcome was: Sensitivity 92%, Specificity 88% (cross-validation area under
the curve [AUC] 0.92) and for the non-T2DM patients: Sensitivity 83%, Specificity 84% (cross-validation AUC 0.84).
Combining AFE data with a ML algorithm provides an unprecedented prediction accuracy for the risk of hip fracture in T2DM and
non-T2DM populations. The fully autonomous algorithm can be applied as an opportunistic process for hip fracture risk assessment.
© 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone
and Mineral Research (ASBMR).
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Introduction

Hip fractures are among the most common reasons for
orthopedic hospitalization in the elderly worldwide,

leading to major health and financial burden.(1) The underlying
cause of such fractures is most often osteoporosis. Pharmacolog-
ical treatments are usually prescribed to prevent hip fractures by
patients identified to be at high risk. Although the strength of the
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hip is a function of its mechanical material properties, geometry,
and loading, most risk assessments use bonemineral density as a
surrogate for bone strength. Hip fracture risk is usually deter-
mined by dual-energy X-ray absorptiometry (DXA) measurement
of femoral neck areal bone mineral density (aBMD) or by the
Fracture Risk Assessment Tool (FRAX), which is based on 11 clini-
cal factors along with femoral neck aBMD. Neither of these tools
is accurate, especially for type 2 diabetic mellitus patients
(T2DM). These patients are at a twofold greater risk of hip frac-
tures and display a “diabetic paradox”: increased risk of femoral
fractures despite having higher bone mineral density.(2-7) The
trabecular bone score (TBS) is an indirect index of trabecular
architecture applied to infer information from spine DXA image
but is assessed only for vertebral fracture risk(7,8) and cannot be
applied to the proximal femur.

Finite element analyses of proximal femurs based on com-
puted tomography scans (CTFEA) have been developed for pre-
dicting femur stiffness and hip fracture risk. CTFEA has been
shown to outperform DXA.(9-14) The practical use of the technol-
ogy has been hampered by the high patient radiation exposure,
the expense of CT scans, and the lack of fully automated FEA cal-
culations. A large number of abdominal and pelvic CT scans are
available in hospitals or health maintenance organization
(HMO) picture archiving and communication systems (PACS).
These scans also usually include the hip and the lesser tuberosity
of the femur. They may, therefore, be potentially used opportu-
nistically for hip FEA without exposing patients to additional
radiation hazards.(15)

We have developed (Simfini is a product of PerSimiO Ltd,
Beer-Sheva, Israel)(16) as an autonomous CTFEA software applica-
tion for the FEA of femurs. This tool has been shown to provide
accurate predictions of pathological hip fractures in patients
with metastatic tumors in two retrospective clinical studies.(17,18)
) Recently Simfini’s performance in predicting hip risk of fracture
was also examined in a feasibility retrospective clinical study on a
cohort of 51 T2DM patients.(19) This system includes several
novel features:

1. It is fully autonomous, with no manual subjective
intervention.

2. The two femurs (left and right) are automatically segmented
from the CT scan by means of a deep learning
(DL) algorithm and thereafter automatically represented by
a mesh of high-order finite elements.

3. Physiological loading conditions are simulated that represent
the two common sidewise falls resulting in neck and intertro-
chanteric fractures.

4. A machine learning (ML) algorithm is used in the post-
autonomous finite element (AFE) stage, which accounts for
patients’ weight, height, sex, and the biomechanical results
at different regions along the proximal femur.

We undertook a retrospective clinical study to assess the per-
formance of the Simfini system in predicting the risk of hip frac-
ture in type 2 diabetic and non-diabetic patients, based on
opportunistic abdominal and pelvic CT scans obtained from
the PACS of a major medical center.

Methods

Study design

The Sheba Medical Center (MC) database was searched for
patients with CT scans of the lower abdomen/pelvis between

2008 and 2020 who experienced a hip fracture (study group)
during the subsequent 2 years. Both non-contrast and contrast-
enhanced CT scans were considered. The control group included
age- and weight-matched patients with CT scans who did not
sustain a hip fracture in the subsequent 5 years (a conservative
requirement to make sure that patients indeed are risk-free for
a much longer period than compared with the study group)
according to the electronic medical record. The CT scans were
collected from the hospital’s clinic registry at Sheba
MC. Approval was granted by the Sheba MC institutional review
board (7969-20-SMC). Overall, 974 CT scans were collected for
the study.

The primary outcome was a binary score of the risk of hip frac-
ture within 2 years after the CT scan or a non-fracture risk within
5 years after the CT scan. The results obtained from the com-
bined AFE&ML system were used as a risk factor for sustaining
a hip fracture.

Patient population

Inclusion criteria included CT scans with a soft tissue filter and
120 Peak kiloVoltage (KVP). Exclusion criteria included:
(i) pathologic fractures, subtrochanteric or atypical fractures,
high-energy fractures, metallic implants, and tumors in the prox-
imal femur; (ii) type 1 diabetes mellitus. Of the 974 CT scans,
507 were excluded because of misfit to the clinical trial protocol.
The data set workflow is presented in Fig. 5.

For each patient, clinical data, including the weight, age,
height, and whether he/she was diagnosed with T2DM, were
retrieved from the electronic records.

AFEs

The fully autonomous CTFEA system Simfini was used to perform
the strength analysis of all femurs according to the algorithm
previously published(16,17,19,20) and schematically illustrated in
Fig. 1. Briefly, the geometry of the femurs is automatically seg-
mented from the CT scans by a deep-learning U-Net network
to produce a 3D voxel representation of the femur. Inhomoge-
neous isotropic material properties are assigned to the centroid
of each voxel within the femur based on the Hounsfield unit
(HU) in the CT scan. The voxels representing the segmented
femur are automatically transformed in amesh of high-order tet-
rahedral elements. High order elements have shape functions
with a polynomial degree increased hierarchically from 1 to
8 (each tetrahedral element has 512 shape functions at p=8),
allow for curved edges, and allow the intrinsic estimation of
the error in energy norm since 8 hierarchical FE solutions with
increasing number of degrees of freedom are obtained. A special
numerical integration scheme is used that facilitates exact inte-
gration of monomials up to 14th order. Three loading configura-
tions were applied as presented in Fig. 2, and average maximum
principal strains were extracted automatically over a circular
region of a diameter of 5 mm on the surface of the femur in each
region of interest.

The three different boundary conditions applied to each
femur

A proximal femoral fracture resulting from a fall on the side is cat-
egorized as either a neck or a pertrochanteric fracture, with an
almost equal probability to occur.(21,22) Two different load direc-
tions induce two different fracture scenarios. These directions
were determined by a former clinical study on 32 patients who
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experienced a hip fracture and were CT scanned immediately
after the fracture. Fourteen patients were diagnosed as having
a neck fracture (f = 8, m = 6) and 18 were diagnosed as having
a pertrochanteric fracture (f = 12, m = 6).(23) For the neck frac-
ture group, loading configuration FallN (Fig. 2) always stresses
the superior and inferior neck with the lowest fracture load and
was selected as a good predictor for a femoral neck fracture.
For the pertrochanteric fracture, loading configuration FallP
(Fig. 2) stresses in most of the cases the trochanter but also the
anterior and posterior base of the neck. The loading condition
was selected as the preferred predictor for trochanteric fracture
(see also in vitro experiments: “…FE models predicted that the
fractures initiate under compression on the lateral side of the
femoral neck”(24)). Illustrative examples of the two loading condi-
tions and the maximum compressive strained locations are pre-
sented in Fig. 2. FallN predicts a neck fracture at the superior neck
in compression. FallP also predicts a pertrochanteric fracture in
compression. Therefore, it is conceivable to consider both. The
application of multiple loading conditions to best represent a
sidewise fall condition has been confirmed by in vitro experi-
ments: “FE-strength from multiple loading conditions better-
classified fracture cases from controls… Only FE-strength from
multiple loading conditions remained significant in age- and
aBMD-adjusted models”.(25)

Stance loading (along the vector connecting the head and
intercondylar notch) also induces high strains in the superior
and inferior neck regardless of the fracture’s actual location.
AFE results under this loading condition are also considered
when determining the risk of fracture. The magnitude of all

loads is normalized by the patient’s body weight. In the AFE,
the total magnitude of all applied loads is 2.5 times the
patient’s weight.

Because the γ and δ angles are determined by anatomical
points, the algorithm performs best if at least 20 mm below the
lesser trochanter is visible in the CT scan. A borderline case is
when only the lesser trochanter is visible. CT scans that do not
include the entire lesser trochanter are disqualified from being
biomechanically analyzed.

Average maximum principal tensile strains (denoted by E1)
and average minimum principal compression strains (denoted
by E3) are automatically computed in each of the areas of inter-
est, for each loading condition: neck superior and inferior, tro-
chanter posterior and anterior, head superior and inferior, and
lesser trochanter inferior (Fig. 3). Headmovement and bone stiff-
ness (force magnitude divided by head movement) as well as
moment applied and maximum andminimum Young’s modulus
in the femur are also computed.

Combining biomechanical data with patient data and
application of machine learning techniques

Statistical learning models, and particularly ML, have been
recently used to automatically post-process many data combina-
tions.(26) Here, we present a ML model that combines patient
data with computational biomechanics results to predict the risk
of hip fractures. The ML model was trained separately for the
T2DM group and the non-T2DM group.

Fig. 1. Schematic description of the Simfini system. (A) Retrieval of CT scans from picture archiving and communication system (PACS). (B) Segmentation
of the two femurs by U-Net and identification of anatomical points. (C) Generation of the inhomogeneous material data and 3D geometry of both femurs.
(D) Generating a high-order finite element (FE) mesh. (E) Application of three different boundary conditions and solution of the FE system. (F) Extraction of
averaged maximum strains at different locations along the femur. (G) Fracture predictions by support vector machine (SVM) algorithm. DL= deep learn-
ing; ML = machine learning.

Journal of Bone and Mineral Research HIP FRACTURE RISK ASSESSMENT 3 n



The available samples were shuffled and split 0.8 for training
and 0.2 for testing. Because of the small train set, we used
cross-validation over the train set only. Cross-validation is a tech-
nique that allows one to estimate the performance of machine
learning models on unseen data. We applied the k-fold cross-

validation method, where the data were divided into k = 6 sub-
sets. The model was then trained on 5 of these subsets and eval-
uated on the remaining one. This process was repeated 6 times,
with each subset being used as the validation set once (Fig. 5).
We calculated the mean and standard deviation of all statistical
metrics (F1, precision, etc.) over the left-out subsets to ensure
the chosen threshold is a good fit for our model to verify its gen-
eralization ability. In that manner, we were able to obtain an esti-
mate of the model’s performance that is not affected by the
specific data used for training and validating. Then, we applied
the model, with the chosen threshold, over the independent test
set (the remaining 20% of the data).

The available patient data set is unbalanced; thus, we had to
prevent the ML model from becoming biased toward the pre-
dominant class. We used random oversampling to balance the
unbalanced training data set, ie, balancing the data by replicat-
ing the minority class samples (a method that does not cause
any loss of information(27)). Oversampling was not used either
for the folded-out set in each training/validation split or for the
independent testing set that was separated at the preprocessing
procedure. Each data set was normalized by removing the mean
and scaling each feature to unit variance. The training samples
are given to the model for creating the inference mapping func-
tion from the domain of features to the label domain—trying to
maximize the number of samples classified correctly but keeping
the problem generalized and not overfit. The testing/validation
samples are the new cases not used for training the ML process.
Based on these, the predicted specificity and sensitivity are com-
puted (thanks to a comparison of the real known labels with the
model-predicted ones).

We considered two ML algorithms: random forest (RF) and
support vector machine (SVM).(28) Both algorithms are well
suited for a mixture of numerical and categorical features. The
SVM training algorithm constructs a model that maps training
examples to points in space to maximize the width of the gap
between the two categories. New examples are then mapped
into that same space and predicted to belong to a category
based on which side of the gap they fall. A detailed discussion
on SVM, including themathematical foundations and the various
factors that influence its performance, is provided in Cristianini
and Shawe-Taylor.(29) The dominant factor we used is the ν
parameter to control the number of support vectors.(30)

Fig. 2. Definition of boundary conditions for sideways fall configuration.
FallN is determined by γ = 10� and δ = 15� and FallP by γ = 30� and
δ = 45� . Figures with colors representing displacements due to bound-
ary conditions are taken from Rotman and colleagues.(19)

Fig. 3. The various locations (head superior, head inferior neck superior, neck inferior, trochanter posterior, trochanter anterior, head center) in the prox-
imal femur at which strains are computed by the autonomous finite element (AFE) analysis (left two figures) andmaximum compressive principal strains at
the neck and intertrochanteric regions due to two different sidewise fall loadings (right two figures).
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RF is an ensemble learningmethod for classification that oper-
ates by constructing a multitude of decision trees at training
time. For classification tasks, the output of the RF is the class
selected by most trees. Random decision forests correct for deci-
sion trees’ tendency to overfit to their training set.

RF and SVM fracture/non-fracture predictions for the two
groups were compared based on the receiver-operating charac-
teristic curve (ROC) and the area under the curve (AUC). The
operating point threshold for the inference model was chosen
at the point with the highest F1 score for the cross-validation
set. Both RF and SVM results are very similar with slightly better
performance for the SVM. Therefore, SFM was the chosen
method. The sensitivity, specificity, and AUC of the SVM for the
T2DM group and the non-T2DM group (computed based on
20% of the CT scans) are presented in Results. A total of 41 fea-
tures were used in the SVM algorithm as detailed in Table 1.

Statistical analysis and verification of results

The predictive performance of the risk of fracture criteria was
evaluated for its specificity, sensitivity, and AUC as follows.
“Sensitivity” is defined as the percentage of patients for
whom fractures were correctly predicted and occurred within
2 years of the CT scan. “Specificity” is defined as the percent-
age of patients correctly identified as fracture-free for 5 years
after the scan. To determine the uncertainty of the estimates
of sensitivity and specificity, 95% confidence intervals (CIs)
are calculated for the test set according to Ying and
colleagues.(31)

The ROCs were generated and the AUCs were computed and
reported.

To further verify the performance once the algorithm was
established, the SVM was applied to the 17 additional CT scans
for which only one femur was successfully analyzed (due to pres-
ence of an implant, preexisting fracture, etc.). Within this cohort,
13 patients were non-T2DM, 7 experienced a hip fracture, and
6 with intact femurs. Four patients were T2DM, 2 experienced a
hip fracture, and 2 with intact femurs.

Results

A total of 974 clinical CT scans were retrieved, generated by sev-
eral different scanners (manufactured by GE [Madison, WI, USA]
and Philips [Andover, MA, USA]). Pixel spacing for the scans
was between 0.57 and 0.98 mm. Although slice thickness was
between 0.63 and 3 mm, most scans had a 2 mm slice thickness.
No duplicate CT scans for any patients were identified in the
cohort. Patients of the study group were selected by one of the
researchers (EK), who was blind to the content of the scans: A list
of CT accession numbers was generated from the Sheba Medical
Center radiology department information system. Then, the cor-
responding CTs were retrieved from the Sheba Medical Center
radiology department PACS in Digital Imaging and Communica-
tions in Medicine (DICOM) format after anonymization of the
DICOMs meta-data fields.

A total of 507 CTs were excluded from the study for not
complying with the protocol (the majority because the femur
was “short” a “short” CT is defined as a CT which does not

Table 1. List of 41 Features Used in the Support Vector Machine Algorithm: 37 Generated by the Autonomous Finite Element Analysis
and last 4 Related to Patient Data

‘Stance neck
superior E1’

‘Stance
trochanter E1’

‘Stance neck
inferior sub
capital E3’

‘Stance
trochanter E3’

Stance head
center Utot

Stance bone K ‘FallN neck
inferior E1’

‘FallN trochanter
posterior E1’

‘FallN lesser
trochanter
anterior E1’

‘FallN head
superior E1’

‘FallN head
inferior E1’

‘FallN Neck
Superior E3’

‘FallN Neck
Inferior E3’

‘FallN Trochanter
Posterior E3’

‘FallN Lesser
Trochanter
Anterior E3’

‘FallN Head
Superior E3’

‘FallN Head
Inferior E3’

FallN Head
Center Utot

FallN Bone K ‘FallP Neck
Superior E1’

‘FallP Neck
Inferior E1’

‘FallP Trochanter
Posterior E1’

‘FallP Lesser
Trochanter
Anterior E1’

‘FallP Head
Superior E1’

‘FallP Head
Inferior E1’

‘FallP Neck
Superior E3’

‘FallP Neck
Inferior E3’

‘FallP Trochanter
Posterior E3’

‘FallP Lesser
Trochanter
Anterior E3’

‘FallP Head
Superior E3’

‘FallP Head
Inferior E3’

FallP Bone K FallP Bone K

‘Femoral
length mm’

‘E max’ ‘E min’ ‘Mtot Stance
at 80 mm
below top’

Age Height Weight Sex

Fig. 4. Illustrative examples of short (left), borderline (middle), and standard (right) femurs in CT scans.
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contain at least the lesser trochanter of one of the two femurs
in the scan.). CT scans in which the lesser trochanter is visible
but included less than 20 mm below the trochanter were
denoted “borderline.” Typical examples of short, borderline,
and standard CT scans are shown in Fig. 4. CTs were
excluded if:

1. The CT scan did not include the entire lesser trochanter.
2. A metallic implant was present that resulted in artifacts in the

proximal femur.
3. Tumors were clearly visible in the proximal femur.
4. A fracture was reported, but it was either caused by a high-

energy trauma or occurred in the distal femur.

A total of 467 CTs (standard and borderline) were suitable for
Simfini analysis (48% of all CT scans collected). Twenty-two of these
could not be retrieved successfully from the PACS, Simfini issued an
error message for 12 CTs (failed to segment the femur or to gener-
ate a finite element mesh), and for 17 CTs, the analysis was success-
ful for one femur only. Therefore, the success rate of Simfini was
(934-44-24-17)/934 = 91%, resulting in data for 836 femurs repre-
senting 418 CT scans. Table 2 summarizes the number of standard
and borderline femurs in the study and control group. None of
the scans had calibration phantoms. Overall, 568 femurs were
acquired by GE scanners and 268 femurs by Philips scanners.

A flowchart illustrating the femur selection process for the
Simfini analysis is presented in Fig. 5.

Table 3 summarizes the distribution of the 836 femurs of
T2DM and non-T2DM patients that were successfully analyzed
by Simfini.

Table 4 summarizes the average age, weight, and height of
the patients for whom Simfini analyses were successfully
performed.

There were no statistically significant differences between the
study and the control groups regarding age, weight, and height
(Table 4).

For each patient, the strains computed by Simfini under the
different loading conditions were extracted and shown as an
example for FallN and FallP in Fig. 6.

The SVM cross-validation performance is summarized in
Table 5 and the corresponding ROC curves are presented in
Fig. 7. The AUC values for the ROC curves are also reported
in Table 5. The SVM test set predictions are summarized in
Table 6. The p value of all data set configurations was less than
0.01.

It is important to emphasize that no attempt was made to
optimize the outcome of the SVM algorithm by including or
excluding input features.

Further verification

The 17 patients for whom the AFE failed to analyze both femurs
were not included in the SVM analysis but were used for further
verification of the accuracy in predicting hip fracture risk.

Using the AFE results for one femur and the trained SVM algo-
rithm, the following statistics were obtained: for the 4 T2DM
patients, the sensitivity was 100% and the specificity was 67%.
For the non-T2DM patients (13 patients), the sensitivity was
75% and the specificity was 80%.

DXA data

Only 11 of the 418 patients whowere AFE analyzed had available
DXA scores in the ShebaMC database: 2 T2DM patients, one who
fractured and one who did not, both had a T-score of�1.5 at the
proximal femur and �1.9, �2.0 at the lower neck. Among the
9 non-T2DM patients, 3 fractured with a T-score of �1.5, �1.9,
�2.2 at the proximal femur and � 1.6, �2.2 at the neck. Six
non-T2DM patients who did not fracture had a T-score between

Table 2. Summary of Standard/Borderline Femurs for the Study
and Control Groups That Were Successfully Analyzed by Simfini

Standard Border Total

No. of femurs without a
fracture within 5 years after CT

204 274 478

No. of fractured femurs 104 254 358
Total 308 528 836

Fig. 5. Case selection process.

Table 3. Summary of the Number of Femurs for T2DM and Non-
T2DM Patients Successfully Analyzed by Simfini

Intact Fractured Total

T2DM patients 118 164 282
Non-T2DM patients 314 240 554
Total 432 404 836
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0.5 and�1.4 at the proximal femur and�0.4 to�2.2 at the neck.
None of the 4 who fractured had a T-score below �2.5, ie, diag-
nosed as osteoporotic. The DXA data are too limited for statistical
analysis; however, it shows that none of those who fractured had
a densitometric diagnosis of osteoporosis (the average age was
75 years, similar to the AFE cohort).

Discussion

Simfini is a fully autonomous finite element system that can be
easily used for opportunistic biomechanical analysis of abdomen
or pelvis CT scans of the femur. The biomechanical analysis is
fused to an ML (SVM) algorithm and provides highly accurate
hip fracture risk prediction in elderly T2DM and non-T2DM popu-
lations. A total of 48% of the abdominal and pelvic CT scans eval-
uated were appropriate for the AFE (very similar to the
percentage reported in Michalski and colleagues(14)), of which

91% were successfully analyzed by the AFE (ie, 43% of the avail-
able lower abdomen and pelvic CT scans were successfully ana-
lyzed). An excellent prediction of hip fractures within the next
2 years for both T2DM patients (a group that possesses a special
challenge) as well as non-T2DM ones was shown.

The further verification on 17 patients for whom the AFE was
able to analyze only one femur showed that the outcome corre-
sponds well with the statistical data presented.

The CT utilization rate in our study is on par with other pub-
lished studies using opportunistic screening tools: Dagan and
colleagues reported an 83.6% utilization rate(32) and Adams
and colleagues reported an 86% utilization rate,(13) both in very
large and diverse populations.

During the past 5 years, several studies have shown the feasi-
bility of using opportunistic CT scans to predict osteoporotic
fractures,(33) specifically hip fractures.(9,34) The only autonomous
algorithm (based entirely on ML)(32) was trained and verified on
more than 48,000 CT scans to assess the 5-year risk of

Table 4. Summary of Age, Weight, and Height (With Standard Deviation) and Sex for Patients Successfully Analyzed by Simfini (418 CT
Scans; 836 Femurs)

No. of CTs Male/Female Average age (years) Average weight (kg) Average height (cm)

Fx T2DM 82 35 M/47 F 75.8 � 8.4 71.5 � 15.8 164 � 8.6
Intact T2DM 59 19 M/40 F 77.5 � 9.4 69.3 � 16.3 163 � 9.7
Fx non-T2DM 157 46 M/111 F 75.8 � 9.4 66.0 � 17.4 163 � 8.8
Intact non-T2DM 120 36 M/82 F 75.9 � 9.3 67.8 � 13.3 162 � 8.6

Fig. 6. Simfini computed strains (tensile E1 and compressive E3) under FallN and FallP loadings (2.5 body weights) for a typical patient.

Journal of Bone and Mineral Research HIP FRACTURE RISK ASSESSMENT 7 n



osteoporotic fractures. TheML predictions for a hip fracture were
shown to be the same as the FRAX performance without BMD
input. The ML algorithm relies mostly on BMD assessment from
CT scans. A sensitivity of 92.6%, specificity of 36.9%, and AUC
of 0.76 were achieved, which were almost identical to FRAX
performance.(32)

FEA determination of femoral strength has been shown to
better predict hip fracture than hip BMD.(35,36) Several previous
studies have shown the use of femoral strength measurement
derived from existing CT scans to predict hip fracture risk.(11,13,14)

In Adams and colleagues,(13) 1959 patients aged 65 years or older
who sustained a hip fracture andwho had a prior pelvic or abdom-
inal CT scan and a DXAwere compared with a sex-matched group.

The study population included 30% diabetic patients, but there
was no subanalysis to determine the validity of thismethod specif-
ically in those patients. In Michalski and colleagues,(14) 490 lower-
abdomen CT scans of 1158 were suitable for FEA (43.2%), of which
123 suffered a fracture within 5 years of the CT scan date. Fracture
prediction by combining both BMD and FE-estimated bone
strength was not statistically different from using either BMD or
FE-estimated bone strength alone. Predicting fractures in women
determined the greatest AUC of 0.710 by using both BMD and
FEA (sensitivity 48% and specificity 84%). The study reported in
Fleps and colleagues(11) used very uniform CT scans, all resulting
from a single CT scannerwith a slice thickness of 1 mmand all hav-
ing calibration phantoms. This database was unusual because

Table 5. Support Vector Machine Cross-Validation Predictions Mean Values and Standard Deviation (in Parentheses) of the Sensitivity,
Specificity, Precision, and Area Under the Curve (AUC)

Mean (SD) F1 score Sensitivity (SD) Specificity (SD) Precision AUC for the cross-validation set

T2DM cross-validation 0.81 (0.03) 0.77 (0.09) 0.82 (0.04) 0.89 (0.06) 0.92
Non-T2DM cross-validation 0.78 (0.04) 0.81 (0.08) 0.80 (0.05) 0.79 (0.05) 0.84
Combined T2DM and Non-T2DM
Cross-validation

0.78 (0.02) 0.8 (0.03) 0.78 (0.06) 0.83 (0.04) 0.88

Fig. 7. Receiver operating characteristic (ROC) curves for the T2DM population (upper left), the non-T2DM population (upper right), and the combined
T2DM and non-T2DM population (lower middle) for the cross-validation set, showing an area under the curve (AUC) of 0.92, 0.84, and 0.88, respectively.

Table 6. Support Vector Machine Test Set Predictions in Terms of Sensitivity, Specificity (With 95% Confidence Interval [CI]), and Precision

F1 score Sensitivity (95% CI) Specificity (95% CI) Precision

T2DM – Test set 0.84 92% (85–99%) 88% (80–97%) 0.85
Non-T2DM – Test set 0.81 83% (76–90%) 84% (77–91%) 0.86
Combined T2DM and non-T2DM cross-validation 0.82 86% (73–89%) 79% (75–82%) 0.85
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typical clinical scans are from a variety of CT scanners, have lower
resolution, and none use calibration phantoms.

CTFEA accurately predicts one of the most important compo-
nents required to determine the risk of femoral fracture—the
bone strength under a load that is believed to represent a side-
wise fall. One of the reasons CTFEA is not commonly used in clin-
ical practice is the manual labor and expertise required to set up
the analysis and interpret the output, which may be a lengthy
and subjective process. Also, the patient’s weight was not taken
into consideration in former CTFEAs, which in the authors’ opin-
ion is an important component.

To address the perceived need for improved fracture risk
assessment, we developed the fully AFE system(16) that automat-
ically retrieves CT scans from a hospital’s PACS, segments the
femurs by a DL algorithm, automatically performs FE analyses
with physiological loads, and applies a SVM post-processing
algorithm. We found the most influential factor over the post
processing performance is the ν parameter that controls the
number of support vectors. The fully autonomous system
showed unprecedented identification of hip fracture risk within
2 years after the CT scan. In Table 7, we summarize the current
system’s performance compared with the performance reported
in former publications.

In conclusion, this clinical study shows a high accuracy
achieved when predicting the risk of fracture resulting from a
sidewise fall by combining AFE and machine learning in both
T2DM and non-T2DM populations. Because there is a significant
clinical need to develop a reliable risk assessment tool for the
T2DM population, implementing such a tool as an opportunistic
measure on a large scale could contribute significantly to the
prevention of osteoporosis-related complications in diabetic
patients, specifically hip fractures.

The proposed AFE may be used in many other clinical appli-
cations by assessing bones’ strength in longitudinal studies to
monitor, for example, radiation therapy influence, medication
efficacy, over/under stress, etc. Application of the methodology
to other bones such as the humerus, vertebra, and tibia is
another promising outcome of the presented methodology.

This study has several limitations: (i) Results were not com-
pared with current commonly used methods to measure bone
strength or assess fracture risk, namely a DXA or a FRAX score,
as the hospital registry in Israel has very limited data on these
for most patients; (ii) CTs that do not include the entire lesser tro-
chanter are excluded from the AFE (about 50% of the overall

lower-abdomen CT); (iii) data on the first diagnosis of T2DM for
these patients are missing.

The encouraging results pave the path to further clinical and
scientific enhancements. A follow-on research study is planned
that will include AFEs of CT scans in which only a part of the lesser
trochanter is visible. Although this approach is expected to consid-
erably increase the number of usable femur scans in the study, it
will likely see a decrease in sensitivity and specificity of the fracture
risk assessment. Optimal input features to the SVM algorithm will
also be investigated, and a prospective study is planned to use
opportunistic CT scans with corresponding DXA scores to allow
direct comparison with the AFE performance.
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Table 7. Summary of the Performance of Recent Methods for Identifying Risk of Hip Fractures: Number of CTs Considered, Sensitivity,
Specificity, and Area Under the Curve (AUC)

Method (ref) No. of CTs Sensitivity Specificity AUC

Current CTFEA + ML T2DM
(cross-validation set)

141 92%
(77%)

88%
(82%) (0.92)

Current CTFEA + ML non-T2DM
(cross-validation set)

277 83%
(81%)

84%
(80%) (0.84)

Current CTFEA + ML combined
(cross-validation set)

418 86%
(80%)

79%
(78%) (0.88)

CTFEA + aBMD(14) 490 48% 84% 0.71
CTFEA(11) 601 0.71–0.80
Women CTFEA(13) �1900 66% 66% 0.70–0.73
Men CTFEA(13) �860 56% 76% 0.75
ML(32) �48,000 92.6% 36.9% 0.76
CTFEA T2DM(19) 51 89% 76% 0.9
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Appendix A1

A Summary of the AFE System (Based on references(16,19))

The femur’s response under physiological loading is well
described by the linear theory of elasticity, and although the
bone at the macroscopic level is orthotropic, excellent predic-
tions were obtained using isotropic inhomogeneous relations
(see Yosibash and colleagues(20) for stance position loading
and Altai and colleagues(37) for sideway fall loading). Thus, a lin-
ear finite element analysis was performed by Simfini. Verification
of the numerical errors was assured by monitoring the error in
energy norm and the maximum and minimum principal strains
at the locations of interest as the polynomial degree over the ele-
ments was increased from 1 to 6 or 8.
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To realize an autonomous FE analysis, several components are
combined. The automatic identification of the femur’s starting
and ending CT slices and the femur’s segmentation is obtained
by a deep learning algorithm (a U-net algorithm). The U-net algo-
rithmwas trained on 178 femurs and tested on 43 femurs, result-
ing in a Dice score of 0.99. Another important component of the
AFE is the determination of the anatomical points (center of
femur’s head, intercondylar notch, and center of shaft 20 mm
below the lesser trochanter), for the application of the different
boundary conditions.

Pointwise inhomogeneous mechanical properties are then
computed at each voxel in the CT scan. The relationships
between Young’s modulus and ash density. These relationships
are for a soft tissue CT scan with 120 KVP (as all collected CT scan)
and validated by a set of experiments on fresh frozen
femurs.(21,27) for cortical and trabecular bone tissue, validated
in experimental settings,(20) were used:

These relationships are for a soft tissue CT scan with 120 KVP (as
all collected CT scan) and validated by a set of experiments on fresh
frozen femurs.(21,27) Becausemost clinical CT scans are phantomless,
a and b in (EquationA.1) are estimated by an algorithm that involves
HU = 0 in air and a histogram of HU in the femurs, using the 0.1%

highest HU that is associated with a Young’s modulus of 20 GPa
(details are given in Yosibash and colleagues(16)). The Poisson ratio
was set to the constant value of ν = 0.3.

An automatic algorithm is applied, which generates a finite
element mesh consisting of tetrahedrons having curved faces
followed by an efficient high-order FE algorithm that solves the
system of finite element equations and generates the data of
interest. We present in Fig. A.1 two examples of femurs from
two patients (which have a relatively long part of the shaft visible
in the CT scan), with the three different loadings presented
(stance and two fall on the side) that are solved sequentially.
Each model has about 9000 to 10,000 finite elements resulting
in about 900,000 degrees of freedom at p = 6. The entire simula-
tion time including the pre- and postprocessing for two femurs
for a patient is about 1 hour on a standard PC.

Finally, a postprocessing algorithm extracts from the finite
element solutions (three different solutions that correspond

to three different boundary conditions) strains in five different
anatomical locations along the femur. The maximum and min-
imum averaged principal strains on the bone’s surface are then
processed and reported in a file.

Fig. A.1. Two finite elementmodels of the left femur of two randomly selected patients. The three locations of the applied stance, FallN and FallP loadings
on the head are shown by blue (in the web publication) and displacement boundary conditions at the lateral greater trochanter shown in pink (in the web
publication).

ρK2HPO4
¼ 10�3 a�HUþbð Þ g=cm3½ � ðA:1Þ

ρash ¼ 0:877�1:21�ρK2HPO4þ0:08 g=cm3
� � ðA:2Þ

Ecort ¼ 10200�ρash
2:01 MPa½ �, ρash ≥ 0:486 g=cm3

� � ðA:3Þ
Etrab ¼ 2398 MPa½ �, 0:3 < ρash < 0:486 g=cm3

� � ðA:4Þ
Etrab ¼ 33900�ρash

2:2 MPa½ �, ρash ≤ 0:3 g=cm3
� � ðA:5Þ
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